温度传感器

温度传感器概述

如同所有传感器,温度传感器将物理媒介物的变化转换为表明变化的可读量度。在温度传感器中,例如,在水银温度计中,外界热量变化造成玻璃体中的液态水银膨胀或收缩,从而在标有温标的细管中上升或下降,其中该温标与环境热能改变成线性比例。包含水银的球体就是该温度计的温度传感器,而沿玻璃管长度方向的刻度则是可读量度。

温度传感器在大范围的国内工商业产品中起着至关重要的作用。在家用电器中,它们确保烤箱、冰箱和中央空调温控器正确行使功能,它们将温度保持在某一特定范围中,每当温度超过设定范围时便启动制冷或发热元件,将环境温度调回特定的稳态水平。

在工业应用中,例如,在化学工程中,它们需要有足够的敏感度来探测温度的细微变化,从而正确控制化学反应。

所有温度传感器都响应热力学变化:随着热能增加,分子运动越剧烈,系统或媒介物膨胀且温度升高。

 

发展史

如果想像温度传感器是某个精确的历史时刻通过某项发明而问世,这就不对了。在公元前三世纪,东罗马帝国拜占庭的工程师斐洛已经意识到了空气的热胀冷缩,并构造了一个仪器(一只装满空气的管子,其一端浸入盛水容器)来表示这一特性。快进到十六世纪和十七世纪,伽利略·加利雷等科学先驱者们改进了这些原始的仪器,创造了温度计的前身,即“验温器”,其能够在装置中可靠地显示对应于发热变化的量化改变。

温度传感器的重大进步发生于 1665 年,此时荷兰数学家和物理学家克里斯蒂安·惠更斯构造了第一支包含一定量酒精的密封温度计(早些时候的验温器也是暴露在气压之下,从而减弱了其完全精确反应温度变化的能力)。惠更斯的装置利用了酒精易变性,即环境温度改变时酒精会相应地大幅膨胀或收缩。但直到 1724 年,第一列用于测量温度变化的标准刻度才广泛用于温度计制造中。该标准刻度与其设计者丹尼尔·吉尔伯特·华氏同名并沿用至今。华氏温度计使用水银代替酒精,因为水银响应温度变化膨胀收缩的线性特征比酒精更具一致性。

今天,不少温度传感器都是带有数字显示的电子设备。

 

技术现状

温度传感器分为两个广义类别:一类直接接触其待测热度的媒介物,另一类则不然(分别称为接触传感器和非接触传感器)。接触传感器进行热对流或热传导,不同的是,非接触温度传感器(或称高温计)测量辐射热量。

每个类别都包括温度计、温差电偶和电阻温度探测器(Resistance Temperature Detector,RTD),测量实物的膨胀收缩,或电阻及导电性响应温度波动而发生的改变。

电阻温度探测器通常在金属热传感器中将变化与电阻绑定,从而提供高度准确的电介导温度测量。电阻变化在可靠的线性基础上反应温度变化,直到温度超过装置刻度上限:对于 700℃ 以上的温度,该金属原件趋于退化且测量值异常失准。

温差电偶也进行电介导温变测量,虽然其技术操作与电阻温度探测器大相径庭。通常,由两种不同金属制造的两条细线被封入一个细圆柱套或温差电偶套管,用以保护脆弱的热敏元件免遭化学损伤和机械损伤。这两条金属细线在温差电偶的一端结合,而在另一端终止于一部测量电压的装置。该装置依赖于这两种金属的电导性差异,该差异在高温下变得更为明显,从而在两者之间产生渐增的电压差。因此,其经常用于温度异常高的场合,而其涵盖的温度范围也异常宽泛,从 -200℃ 到 2100℃。

 

温度传感器在制造业的应用领域

温差电偶广泛应用于钢铁工业,在钢铁制造过程中监测化学反应及温度。若干温差电偶可连接至计算机程序,以在化学精炼厂和生产厂房中监测不同阶段工序中的温度。

一系列的温度计,包括酒精温度计、水银玻璃温度计和红外线温度计,都被气候学家用于测量世界各个海洋不同地点不同深度的温度;它们还被广泛用以测量外部环境温度,例如地方当局在可能发生冰冻的情况下可由此决定是否进行路面铺砂。

最近,纳米温度计作为一个新兴领域正被用于测量尺寸小于一微米的微粒温度,这是至今为止曾被证明无法企及的壮举。

 

温度传感器与其他传感器的区别

所有温度传感器最典型的特征是在某一媒介物中将属性(例如,密封温度计中一定量水银的体积或金属元件的导电性)转换为反应热对流、热传导或热辐射变化的可读刻度。

和其他传感器不同,温度传感器的设计目的并不在于测量运动变化,或通过红外光创建图像,或像射频识别传感器那样读取芯片或标签内的电子编码数据。